
Muscle invasive bladder cancer subtyping

o While the network approach reveals subtypes that differ from those identified by standard methods, the 
variation in the number of TFs does not directly influence the subtypes of MIBC.

o Significant survival difference of the MIBC subtypes derived from the network with TF=6 and SBM

Fig 5 MIBC subtypes comparison between the network approach, the 
TCGA[2], consensus[4], and our previous work with K-means and insitu[5]

Fig 6 MIBC Subtypes survival comparison for the 
Network with TF=6
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Discussion
o Our results show the potential of using a network approach to stratify muscle 

invasive bladder cancer
o Selective edge pruning emphasizes the role of the TFs within the network, but its 

impact diminishes when the number of edges for TFs exceeds six.
o Both Leiden and SBM perform worse when more edges are allowed, but SBM 

tends to find more communities   

Future work
o Integrate the impact of gene mutations into the network pipeline
o Apply Hierarchical Stochastic Block Model to the network and improve the 

integration between healthy and tumour datasets

Leiden vs Stochastic Block Model (SBM)

Fig 3 A series of networks 
were generated where 
selected genes (TF and 
control) have a minimum 
degree from 3-15. For each 
experiment there are 10 
different sets of 324 non-TF 
genes randomly selected for 
the control

o In Fig 3 A) the selective pruning accentuates the role of TF in the 
networks with little benefit of allowing more than 6 edges for the TFs. 

o TF does not seem to help community detection more than random 
genes

o The number of communities increases SBM[2, 7] tends to find more 
communities while Leiden[3] less (Fig 3 B)

o Performance of both algorithms declines proportional to the number 
of edges permitted for TF (see Fig 3 C, D)

A) Selective edge pruning B) Number of communities C) SBM performance (Entropy) D) Leiden performance (Modularity)

Lower the better Higher the better

Fig 2 Network pipeline based on PGCNA[2]. The network is constructed from the 5,000 most variable genes, 
which include 324 TFs, taken from 88 non-cancerous samples. The tumour dataset comprises 408 samples.

Methods

o SBM with 31 communities
o 5K nodes, 1123 edges
o Minimum degree of 3 for standard gene 

and 6 for TF
o Larger nodes are Transcription Factors

Networks overview

o Leiden with 11 communities
o Minimum degree of 3 for standard 

gene and 50 for TF
o Larger nodes are Transcription 

Factors
o 5K nodes, 38877 edges

The pruned network 
reveals more communities 
and has less noise
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Motivation – Bladder Cancer

o For the first time, information from a normal tissue dataset is used 
to inform the stratification of the muscle-invasive bladder cancer 
(MIBC) cohort from The Cancer Genome Atlas (TCGA)[1]

o Transcription Factors (TFs)  are genes encoding regulators of gene 
expression and are prioritised in the edge pruning strategy

Fig 1  Bladder cancer statistics from Cancer Research UK

New cases of bladder cancer each 
year 2016-2018 average,  UK

Deaths from bladder 
cancer, 2016-2018, UK

Death rate for 10 or more 
years, 2013-2017, England
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